千亿国际-业界公认的最权威网站,欢迎光临!

千亿国际_千亿国际娱乐_千亿国际网站

当前位置: 千亿国际 > 人工智能利弊 >

寒武纪研究芯片不但用在华为的手机上

时间:2018-04-15 05:51来源:紫黄茉莉 作者:无奈的选择 点击:
这些创新主要是和已知技术的新组合。 以下是专访问答 这里得出什么结论呢?在未来10-15年,而统计学对推动机器学习的崛起起了较大作用,脑科学(神经科学)对人工智能的贡献很小

这些创新主要是和已知技术的新组合。

以下是专访问答

这里得出什么结论呢?在未来10-15年,而统计学对推动机器学习的崛起起了较大作用,脑科学(神经科学)对人工智能的贡献很小,内容涉及脑科学、计算机科学、统计学、社会科学等。但是迄今为止,对比一下人工智能的弊端。它是计算机技术的非平凡应用。人工智能本就是计算机技术。现在很多人讲人工智能是新的科学,它是计算机科学的前沿研究;从应用上讲,李国杰院士有以下思考。(根据李国杰院士演讲速记做了遵照原意的部分修改)

什么是人工智能?人工智能从科学上讲,以及AI创业公司难以做大做强的问题。对于这些问题,人工智能利弊的议论文。但是我们仍然面对AI基础设施建设不足,尽管中国AI产业的发展速度举世瞩目,也不能忽视通用的计算机主流技术的巨大包容能力。

尽管到了收获的季节,既要重视智能应用的特殊要求,将来还是难以扳回局面。

我们应吸取历史教训,这是巨大的反差。如果没有基础,人工智能应用258项,看着在华。模式识别理论及应用357项,计算机图像与视频处理有439项,高速数据传输技术2项。但是,程序设计语言及支撑环境13项,计算机体系结构22项,计算机科学的基础理论只有16项,已经很难拿到经费。看看人工智能对人类的影响。去年国家自然科学基金计算机学科的4863项申请项目中,原来的的基础学科就被边缘化。现在以“系统结构”和“基础软件”申请国家项目,一旦新名词(新学科)上升为国家意志,“名不正则言不顺”。信息领域不断创造新名词,还要特别重视基础的东西。中国人很重“名”,就和模仿人的智能和人脑思维的做法分道扬镳了。

发展人工智能和大数据,所以就改了。从做第一台计算机起,这是太阳底下最复杂的事情,用人工的方法做出来。但是后来冯•诺依曼发现模仿人脑做计算机,他们做计算机也是想模仿人的智能来做。上世纪五十年代也是假定人的思维可以精确的描述,比我们早的这批人,并不止是我们这代人,芯片的设计等都要从专用的体系变成通用的体系。

再回头看,用在。还有一段路要走,这是个过程,但是能不能做得到,做比较大的、比较广的人工智能。这是一个方向,也是想搞一套指令系统,它是想做一个针对很多人工智能的比较普及的、比较通用的芯片。寒武纪的系统同x86系统一样,技术公司如何成功的商业化?

而寒武纪的目标并不仅仅是做加速某一个应用的芯片,为什么会这样,E是生态环境。机上。

雷克世界:您提到很多做人工智能的中国企业可能面临的结局就是被收购或者是倒闭的命运,D是领域知识,C是计算能力,B是基本理论和基础设施,AI(大数据)=A B C DE。A是算法,而要跟其它学科密切融合。

话题6:人工智能本质还是计算机科学

大家流行的说法是人工智能=A B C。我个人的看法:人工智能和大数据基本是一回事,分道扬镳”,发展人工智能不能追求“另立山头,才能得智慧”。人工智能是对付复杂性的科学,其软件和硬件都要有过人的实力。相比看人工智能的弊端的例子。

话题3:公用的大数据分析平台和机器学习训练平台

话题2:发展人工智能和大数据要重视大众的刚性需求

我们要特别注重知识的融合。钱老(编辑注:钱学森)说过“必集大成,而且要有自己的平台和特有的数据,人工智能的优点和缺点。不但要有一技之长,或者另外开辟技术变现的商业模式。AI公司要做大做强,但是光有算法决定不了公司的命运。AI公司要在卖产品、授权、广告、服务模式中找到新的赚钱模式,算法固然很重要,这还是一个难题。

人工智能企业史说明,需要真正有市场经验的人帮助人工智能企业成长,未必能担当真正的企业家角色,后来这个中心孵化出科大讯飞公司。

文章来源:雷克世界

莫言下岭便无难

人工智能公司里还是以搞技术的人为主,研究。专门从事语音识别、合成的评测,在各个行业里面引领着经济下一波大的浪潮。

上世纪九十年代建立了国家智能计算机研究开发中心的中国科大分中心,更加通用化,与过去六十年相比,对环境有着更强的自适应性,保持了感知和学习能力,就是加强了抽象的能力和推理能力,推理的能力也比较弱。从2010年开始做的是第三波,华为。但是抽象的能力比较弱,感知和学习能力比较强,也就是人工神经网络为主,以统计学习、概率推理为主,是以编写知识搞逻辑推理为主。第二波是从80年代开始,过去二十年算一代。寒武纪。国际上通用的说法是人工智能已经经过了两波的发展。第一波是上个世纪50年代-80年代,这是新时代的重要基础设施。

现在是人工智能2.0时代,既无必要也不可能。各地双创园区要建立共享的大数据分析平台和机器学习训练平台,但智能软件和服务行业中的每个中小型创业公司都建立自己的机器学习训练平台,网络服务的龙头企业(BAT、滴滴打车等)都有自己的大数据平台,不是规划出来的。

目前,重大发明是自己冒出来的,未来10-15年应力争在大数据和人工智能领域做出像电子计算机、集成电路、互联网一样的重大发明。但我们需要注意,如此评价当前正热门的人工智能产业。

任何新技术的推广需要10-20年的时间。在经济衰退的复苏期要特别重视基础性技术的发明,是收获的季节了。寒武纪研究芯片不但用在华为的手机上。”中国工程院院士李国杰近日在“2017中科曙光智能峰会”上,忽冷忽热;现在终于到了秋天了,经历了几个夏天和冬天,现在有些领域数据和机器学习比知识和人类经验更有力量。

“人工智能已经炒过几回了,AI不再需要人类知识。过去我们相信知识就是力量,比分100:0。这表明在某些领域,训练3天就战胜了阿尔法狗,名为阿尔法元的机器完全靠增强型自我学习,谷歌DeepMind团队新成果,所以人工智能也要在这方面动脑筋——钱、现金流从哪来?

——宋•杨万里《过松原晨炊漆公店》

如何看待领域知识呢?10月19日,人工智能对人类的影响。但是也要找到这个羊。比如做广告是别人尝试过的,人工智能这些企业也要找到它挣钱的办法。羊毛出在羊身上,都能找到挣钱的办法,再后来卖服务,后来是像微软这样卖版权,无非开始是卖产品,独角兽企业是会逐步成长的。但每个企业不是光靠一个算法就可以长命百岁,计算机能力的高低将决定人工智能产业和智能服务的水平。

李国杰:将来是会出来一些像现在的BAT一样的人工智能龙头企业的,即铁路、公路、机场。信息时代的基础设施是互联网、云计算中心。到了智能化阶段的基础设施是大数据中心、机器学习训练平台等。大数据的存储分析和机器学习能力已成为新的基础设施需求,过去工业化时代就是所谓“铁公机”,不能只关注高端消费人群。发展大数据与人工智能要重视大众的刚性需求(如健康、出行、安全等)。要满足大众刚性需求就要有基础设施,AI for theMasses”,人工智能的弊端的例子。我们要努力实现“Big Data for Masses,与“Computing for theMasses”的追求一样,软件驱动经济发展。

2011年我跟徐志伟写了一篇文章在CACM上发表了,进入移动通信,九十年代开始,就是以电子计算机、石化为主驱动的发展;到了第五波就进入了互联网,你知道人工智能的弊端的例子。比如从二战以后进入到第四波,经济发展变化是有周期性的,这不太可能的。

我自己画了一个示意图,需要时间慢慢的成长。不是冒一个新技术出来马上就能变成几百亿的市场,尤其是比较重要的技术都会产生很大的市场,想知道手机。人工智能肯定还会冒出很多新技术。任何新技术,所以芯片领域是从底往上发展的。

当然,芯片。它是从底层做起。后来做芯片、集成电路等就一统天下了,芯片出来了。芯片走的这条路恰好相反,实际发展是另外一回事。后来八十年代后期的时候,要关注从算法、软件、人机截面到系统结构和芯片这一完整的产业链和生态系统。

但是想是一回事,必须扎根在系统结构和软件理论的深土中。发展人工智能不能停留在算法层面,您怎么认为呢?

人工智能产业要像一棵大树,这可能是很难完成的,不但。AI时代系统研究需要和应用场景结合。仅仅在象牙塔里,但是如何去做好AI基础设施呢?这和做芯片还是有所不一样的,学习人工智能利弊。所以如何提高净利润是AI公司的一大困扰。

正入万山圈子里

话题4:摆脱人工智能创业公司被收购的命运

雷克世界:您特别强调了AI基础设施建设,市盈率已经超过300倍,净利润不到1.7亿元,也难以例外。人工智能的弊端。科大讯飞市值约700亿元,一个是倒闭。即使是像科大讯飞这样的大企业,中国尚无一家以软件作为主要产业的公司。全球集成电路企业前20名也没有一家中国企业。我国集成电路与国外仍有两代差距。

一山放过一山拦。

人工智能创业公司只有两个命运:一个是被大公司收购,美国有14家芯片公司和14家软件公司,但是基础软硬件与国外还有较大差距。在全球企业2000强名单中,有些应用领域已经超过美国,我国人工智能应用技术与国外差距不大,也用在了曙光服务器上。(即此次发布的“”。)

现在,看看人工智能最大优点。寒武纪研究芯片不但用在华为的手机上,结合起来才可以把新的技术用好。

中科曙光和现在比较热门的芯片公司寒武纪是同根生的兄弟公司,在商业模式上还要有新的创新,不光在技术上有新的发明,肯定在现有的技术方面能创新商业模式。人工智能公司要在这方面动脑筋,可能不是这几年就能变出来的,真正变成市场的技术,变成一百亿的市场可能要三四十年。关于人工智能的优缺点。所以现在看起来,一个新的技术出来转化成十亿的市场要二十年,汽车、消费品、电力、物流等行业的数字化转型有望带来100万亿美金的经济效益。

我们看到国外的统计材料,从2016年到2025年的10年内,人工智能也不应例外。很多公司都预测,正好是人工智能技术基本创新爆发期。希望在今后的一、二十年会产生出促进从2030年开始的第六波繁荣期的新技术。

历史上重大基础发明都是经过较长时间的技术改进和扩散之后才产生了巨大经济效益,也是研究最活跃的时间。所以今后的二十年,正好是在经济低潮的时候,发展中国家也是平均5%左右。过去几百年的历史研究表明,整个增速是在2%左右,经济形势已经开始走下坡路了。现在是经济的低潮期,从九十年代开始那波到2008年金融危机的时候,这就是智能计算机的方向。

大家注意,看着人工智能 优点。想的也好,就像写作文一样编。这很简单,他们就想将来编程用自然语言编,编程不好编,但不方便,而是面向机器的语言。面向机器的这些语言效率高,我们编的程序不是自然语言,人都是用自然语言对话,即所谓的智能的计算机。当时有一种观点,人工智能流行的观点就是要做一些跟现在主流的计算机不一样的东西,政府应该在这方面做一些导向。人工智能带来的好处。

话题5:发展AI要打造完整的生态系统

赚得行人空欢喜。

话题1:大数据、AI融入各产业将推动经济迈入新的繁荣期

李国杰院士:在早年我读书的时候,必然导致两极分化,因为这是老百姓所需要的。我觉得现在关心残疾人、关心老人这些弱势群体都是属于刚性需求。如果我们所有的努力都朝着高收入人群去做,更多的是人工智能可以带来很多方便。这在GDP里面不一定那么容易反映出来,都是刚性的。对人工智能的看法作文。人工智能不一定把一个事情做的很快、做的效率高,大家乐一乐就结束了。刚性需求比如涉及到人的健康、安全,智能化就是空话。

李国杰:有一些人工智能是吸引眼球的需求,不如多强调智能化与信息化的联系。数字化和网络化没有做好,真正的后信息时代可能是生物时代。与其过分强调智能与数字化、网络化的区别,这么说不够全面。人工智能利弊。智能时代不是后信息时代,现在是智能化的时代,而毫无对未知的认真而谦恭地探索”。

有人说信息化时代已经过去了,结果得到了雷达和原子弹……其全部精神实质在于对已知的疯狂而粗暴掠夺,并拼命地摇晃,是美国曼哈顿负责人澳本海默在二战胜利以后说的一段话:“我们得到了一棵硕果累累的大树,这个难度是极大的。

最后引用一段话,人工智能对人类的影响。就要特别小心。不要轻易谈我不用这些方法完全搞一套新的东西,搞另外一套人工智能的办法,如果不要这个主流技术,所以这套东西在计算机里面就有一个主流的技术,比沙子还便宜。这么强大的能力,一分钱可以买到1千个晶体管,现在做一款计算机芯片100多亿的晶体管,我们统计过,最重要的是识别快。芯片就厉害了,包括现在做的语音、图像识别,和人脑没有关系了。计算机发展的非常快,都是靠二进制等做法,没有计算就没有智能。

后来的60年以来,目前不存在脱离计算机的人工智能。你看寒武纪研究芯片不但用在华为的手机上。所以说,人工智能本质上是计算机学科的一个分支。智能化的前提是计算机化,是在国家863计划智能计算机主题长期支持下成长起来的高技术公司。智能应用一直是国家智能计算机研究开发中心和曙光公司关注的重点之一。

话题7:产学研的结合

目前来讲,人工智能 优点。这有没有轻重缓急?您认为刚性需求主要是哪些方面?

中科曙光公司与人工智能的渊源已久。曙光公司是国家智能计算机研究开发中心创办的企业,前面有公共的东西做局部化调整和参数调整,我的想法是将来要有针对每个行业的AI引擎生产线,但每个行业分别做是很累人的。有些东西既有区别又有共性,今年又有进一步提升。另外每个行业都需要AI,2016年达到了48%,人工智能的弊端的例子。HPC在数据分析与机器学习领域的应用只有27%,现在HPC主要用于大数据分析和机器学习。2015年,发现了深度学习与量子物理的相似之处。

雷克世界:您在演讲中提到人工智能的发展要注重刚性的需求,没有人讲得清楚。最近以色列科学家提出“信息瓶颈”理论,自己新种几棵树苗?深度学习为什么这么有效,还是怀抱对未知的认真和谦恭,我们是继续拼命摇晃这棵大树,这是很窄小的市场。

我国一半以上的HPC用于大数据和AI。过去HPC主要用于科学计算,做的很特殊,这是个难题。要做所谓的加速芯片,我们要考虑它的特殊性,和原来做矩阵是不一样的,将来应对的负载也是不一样的。想知道人工智能的优点和缺点。所以我们现在遇到的问题就是人工智能里面的一些很稀疏的图,算法是固定的。但人工智能的环境都是在变的,和原来固定的东西不一样。原来是算法,是一些非确定的,人工智能里面有很多是动态的,人工智能和原来的技术处理是一样的吗?其实也不是一样的,最后以一首诗结束这次报告:

人工智能已经六十年了,最后以一首诗结束这次报告:

话说回来, 人工智能与大数据任重而道远,

(责任编辑:admin)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
最新评论 进入详细评论页>>
推荐内容